An efficient Self-Organizing Active Contour model for image segmentation

نویسندگان

  • Mohammed M. Abdelsamea
  • Giorgio Gnecco
  • Mohamed Medhat Gaber
چکیده

Active Contour Models (ACMs) constitute a powerful energy-based minimization framework for image segmentation, based on the evolution of an active contour. Among ACMs, supervised ACMs are able to exploit the information extracted from supervised examples to guide the contour evolution. However, their applicability is limited by the accuracy of the probability models they use. As a consequence, effectiveness and efficiency of supervised ACMs are among their main real challenges, especially when handling images containing regions characterized by intensity inhomogeneity. In this paper, to deal with such kinds of images, we propose a new supervised ACM, named Self-Organizing Active Contour (SOAC) model, which combines a variational level set method (a specific kind of ACM) with the weights of the neurons of two Self-Organizing Maps (SOMs). Its main contribution is the development of a new ACM energy functional optimized in such a way that the topological structure of the underlying image intensity distribution is preserved – using the two SOMs – in a parallel-processing and local way. The model has a supervised component since training pixels associated with different regions are assigned to different SOMs. Experimental results show the superior efficiency and effectiveness of SOAC versus several existing ACMs. & 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ناحیه‌بندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت

The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...

متن کامل

A Concurrent SOM-Based Chan-Vese Model for Image Segmentation

Concurrent Self Organizing Maps (CSOM s) deal with the pattern classification problem in a parallel processing way, aiming to minimize a suitable objective function. Similarly, Active Contour Models (ACM s) (e.g., the Chan-Vese (CV ) model) deal with the image segmentation problem as an optimization problem by minimizing a suitable energy functional. The effectiveness of ACM s is a real challen...

متن کامل

A Survey of SOM-Based Active Contour Models for Image Segmentation

Self Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly when dealing with image segmentation as a contour extraction problem. The idea of utilizing the prototypes (weights) of a SOM to model an evolving contour has produced a new class of Active Contour Models (ACM s), known as SOM based ACM s. Such models have been proposed in general with the ...

متن کامل

On Analytical Study of Self-Affine Maps

Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...

متن کامل

Image Segmentation with Active Contours based on Selective Visual Attention

Telemedicine is growing and there is an increased demand for faster image processing and transmitting diagnostic medical images. Identifying and extracting the region of interest (ROI) accurately is an important step before coding and compressing the image data for efficient transmission or storage. The usual approach to extract ROI is to apply contour segmentation method. Chan-Vese active cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2015